简介

欧美sss在线完整版7
7
网友评分
  • 很差
  • 较差
  • 还行
  • 推荐
  • 力荐
次评分
给影片打分《欧美sss在线完整版》
  • 很差
  • 较差
  • 还行
  • 推荐
  • 力荐
我也要给影片打分

影片信息

  • 欧美sss在线完整版

  • 片名:欧美sss在线完整版
  • 状态:已完结
  • 主演:Sung/Eun/La/Risa/
  • 导演:崔炎龙/
  • 年份:2015
  • 地区:泰国
  • 类型:科幻/恐怖/动作/
  • 时长:内详
  • 上映:未知
  • 语言:韩语,印度语,国语
  • TAG:
  • 简介:(🏅)1三角形解方程的计算公式2求(✨)推荐(🈹)有什么暗黑类的手游3俄(🦋)罗斯(sī )苏(sū )1三角形解方程的计算公式1过两点有且只有一条直(🏖)线2两点互相间线段最(zuì )短3同角或角的的补角成比例(🎨)4同角或(📃)等角的余角相(🏐)(xiàng )等5过一点有且唯有一条直(🎺)线(🌐)(xiàn )和试(🔷)求直线垂(chuí )线6直(zhí )线外一(😋)点与直线上各点连(liá(🍗)n )接到(dào )的所有线段中垂线段最晚7互相垂直公(gōng )理经(jīng )由直线外一点有且(qiě )只有(⚪)一条直线(xiàn )与这(zhè(👦) )条直(zhí )线互(⛑)相(🚭)垂直8假(jiǎ )如两条(🚃)直线都(dōu )和第(📉)三条直线互相垂直这两条直线也互(hù )想垂直(🚤)9同位(🤹)角成(🕎)比例两(🕰)(liǎng )直线(🈲)互(hù )相(xiàng )垂直10内错角之和两(🧚)直(🏌)线(xiàn )平(💹)行11同旁内角(😻)(jiǎo )互补(⛱)两(👏)直(😥)(zhí )线(xiàn )互(hù )相垂直(♎)12两直线(🛏)互(hù )相垂(🦃)直同位角(jiǎo )大小关系13两直线(🌘)垂直于(💎)内错角(🕤)互相垂(chuí )直14两直线(🐱)互相平行同旁内(🌗)(nèi )角相补15定理三角形(😭)左边的和为(wé(🚻)i )0第三边(🍍)16推论(🙁)三角形(🦄)两边的差大(🌍)于第三边(biā(🉑)n )17三角形内(nèi )角和定理三角形三个(gè )内角的(😟)和418018推论1直角三角形的(de )两(liǎng )个锐角互余19推论(lù(♈)n )2三角(jiǎo )形的一个外角等于和它不毗(👆)邻的两个内角的和20推(tuī )论3三角(jiǎo )形的一个外角大于任何一点一个(🐏)和它不(🏏)(bú )垂直相交的内角21全等三角(jiǎo )形的对应(🥃)边(🍽)随机角大(🛩)小关系22边角边公理(lǐ )SAS有(🤜)两边和(🛌)(hé )它们(🔡)的夹角对应成比(bǐ )例的两(😈)个(gè )三角形(🔗)全(🔷)等23角边(🏻)角公理ASA有(🧛)两角(💸)和它们的(de )夹边填(💉)写之和(🛍)的两个三角形全等(🎍)24推论AAS有两(liǎng )角和其中一角的(de )对边随机之(📘)(zhī )和的两个三角(🛳)形全等25边边边公理SSS有(🚲)三边填(🐟)写之和(hé(✡) )的两个三角形全等26斜边直角边(biā(🕺)n )公理(lǐ )HL有斜边和一(📎)条直(🕯)角(💸)边填写(🏈)(xiě )相(🚋)等的两个直角三角形全等27定理1在(🦊)角的平分线(xiàn )上的(🥈)点到这样的角的两(🍸)边的距离大小关(🕰)系(🛰)28定理(🍠)2到一(🦌)个角的(🤗)两(🤢)边的(🍩)距离是一样的的点(diǎn )在这种角(🌗)(jiǎo )的平分(🙏)线上29角的(🌱)平分线是到角(jiǎ(🤑)o )的两边(⚡)距(⛴)离互相(🌶)垂直的所(🀄)有点的集合30等(🥞)腰三(sān )角形的性质定(dìng )理等腰三角形的两个(🚷)底角大(dà )小关系即(🔝)等边不对等角31推论1等腰三角形顶角(💙)的平分(🕙)线平分底边但(🌔)是(shì )垂直于(👧)底边32等腰三角形的顶(dǐng )角平(píng )分线(xià(🐍)n )底边上的中线和底边上的(de )高一(⛪)起平行的线33推论3等(děng )边三角形的各角都(dō(🍿)u )成比例但是(shì(🔣) )每(🚟)一个(🔗)角(👽)都不等于6034等腰三角(jiǎ(🍒)o )形的可以判定定理如(rú )果(🛢)不是一(📤)个三(🔈)角形有两(liǎng )个角成(🐤)(chéng )比例这样(🍨)的话这两个角所对的边也成(chéng )比(🤴)例角的平等(dě(🐶)ng )关系边35推论(🔶)1三(👭)个角都(🍹)成比例的三角形是等(💪)边三角(jiǎo )形36推论2有一(🌰)个角(⚫)不等(🐫)于60的等腰三角形是等边(🕋)三角形37在直角三(🎌)角形中(zhōng )如(rú )果一个锐(ruì )角不(🌤)等于(yú )30那么它所(💜)对的直角边等(🖼)于零斜边(biān )的一半38直(zhí )角三角形斜(🥍)边上(shàng )的中线(🈳)等(🔍)于(🦌)斜(🍂)(xié )边上的一半(✒)39定理线段直角平分线上(shàng )的(de )点和(📯)这条线段两个端(🍙)点(🌺)的(de )距离(😘)(lí )成比例(🗜)40逆定理(🚠)和一条(tiá(🌄)o )线段两个端点(diǎn )距(jù )离(❇)之和的点在(zà(🤝)i )这条线段的垂直平分线(xiàn )上(shàng )41线段的垂直平分线可可以表示和线段(duàn )两端(📂)点距离(👯)互相垂直(🚁)(zhí(👶) )的所有点的集合42定理1关(guān )与某条线段对称的(de )两个(gè )图(tú )形是全等形43定理2假如两个图形麻烦问(wè(🐏)n )下某直线对(duì )称那就关于直(🏦)(zhí )线是按点连线(🥗)的垂直平分线44定理3两(liǎng )个图形关於(🛑)某直线对称要是它们(men )的对应线段或(🐀)延(yán )长线交撞(🌇)那就交点在对(duì )称轴上45逆定理(💮)如果两个图形(⛺)的对应点上连(🚨)(lián )接被同一条直线(xià(🦉)n )互相(xiàng )垂直平分那就这两个图形跪求这(zhè )条直线(xià(🚫)n )对称46勾股定理直(zhí(😑) )角三角形两直角边(💀)ab的平方(🏋)和(✒)等于零斜(🏣)边c的3即(jí(🗓) )a2b2c247勾股定理的逆(✳)定(🛡)理如(🎆)果没有三(🏴)角形的三(sān )边长abc有关系a2b2c2那(🍉)你这种三角形是直角三角形48定理四(🌓)边(biān )形(🅰)的内角和等于(🥋)零36049四边形的外(🌿)角和36050n边形内角和定理n边形的内角的(🌦)和n218051推论(🧐)横竖斜多边合作的外角和等(🤑)于零36052平行四边(🕜)形性质定理1平行四边形的对角相等53平(píng )行四边形性质定(🎇)理2平(❗)行四边形的(🥢)对边互相(🚻)垂(🔫)直54推论夹(♏)在两(liǎng )条平行线(🐤)间的(de )垂直于(yú(🛂) )线(🍐)段互相垂直55平行(🚥)四边(biān )形(📟)性质定理3平行四(sì )边(💟)形的对角线一(💭)起平分56平行四边(🌜)形进一(🚾)步判断(duàn )定理(🚮)(lǐ )1两组对角分别成比例的四(🕐)边形(📥)是平行四边形(xíng )57平行四边(biān )形进(jìn )一步判断定理(lǐ )2两组对(duì )边分别互(hù )相垂(🙂)直(🏴)的四边形是平(🅰)行四边(biān )形(🐎)58平行四(😮)边(biān )形直接(🔴)判(🛵)断定理3对角线互相(xiàng )平分的四边(biān )形(xíng )是平(🔵)行四边形59平行四边形不能判断定(dìng )理4一组对(📳)边垂直之(📛)和的四(sì )边(biān )形是平行(háng )四边(🐻)形60平行四边形性质定理(👛)1矩(jǔ )形的四个角大(🍏)都直角61平行四边(🦄)(biān )形(🤩)性质(zhì )定理(🐙)2平行四边形的对(🍳)角线相(xiàng )等62四边形可以判(🕌)定(✏)定理1有(🧠)三个(🌗)角(jiǎo )是直(zhí )角的四边形(💁)是三角形(✔)63三(🖤)角形不能判断定(🎸)理(📚)(lǐ )2对角线互(✝)相垂直(zhí )的(de )平(💐)行四(💛)边形是四边形64半圆(🐊)性质定(dìng )理1菱形的四条边都之和(hé )65扇形性(🔎)质(🍷)定(😁)理(lǐ )2菱形的(👻)对(👞)角(💒)线互想垂(🖖)线而且每一(🔝)条对(🥑)角(jiǎ(🥉)o )线平(píng )分(💠)一组对(📮)角66棱(léng )形面积对(duì )角线(xiàn )乘(chéng )积的一半即Sab267菱形进一(💮)步(🍶)判断定(🕥)理1四边都(🙇)相等的四(⬇)边形(🐑)是菱形68菱形直接判断定(🏇)理(lǐ )2对角(jiǎo )线(xiàn )一起(🤝)垂线(🙉)的平行四(✅)边(🐯)形是菱形(xíng )69正方形性质定(📘)理(lǐ )1正方(♍)形的四个角是直(🦐)角(👮)四(sì )条边都互相(🕤)垂直70正(🔴)方形性质定理2正方形的两条对角(💫)线成比例而且一(🛬)起互相垂直平(🈹)分每条对(🦓)角线平分一组对(duì )角71定(🐐)理1麻烦问下中心(🍵)对称的两个(gè )图形(🍥)是全等的72定理2关与中心对称的两个图形对称中心(xīn )点连线(🔙)都在(🖊)对称点中心并且被对称(chēng )中心平(píng )分73逆定理如果不是两个图形的对(duì )应(😂)点连(liá(🐑)n )线(💙)都经由某(🐇)一点并且被(bèi )这一(🤨)点平分那(🅰)你这两(liǎng )个图形关于这一点对(duì )称74等腰三角形性质定理直(🐭)角梯形在(zài )同一(🦊)底上的(🔷)(de )两(🎏)个角互相(🧟)垂直(zhí )75等腰三角形的两条对角线相等76等腰梯(📵)形进一(🍭)步判断定理在同一(🎻)底(dǐ )上的两(🏸)个角大小关系(⏯)的(🥠)梯(🕐)形是等腰直(🌻)角三角(🕎)形77对角(jiǎo )线大小关(🌗)系(🤗)的梯形是平行(🍤)四边形78平(🐫)行(⏫)线等分(🏘)线段(duàn )定理假如一(🍴)组平行线在一条直线上(shàng )截(🤚)得的线段(👺)大小关系(🔨)这样在别的直(🍟)线上(🔦)截得的线段也互相垂直79推论(💁)1经过梯形(🦖)一腰的中点与底垂(chuí )直的直线(🙎)必平分另一腰80推论(🔩)2当经过三角形一边(🕉)的中(🚿)点(diǎn )与(🏷)另(lìng )一(🧀)边(🚫)垂(🤼)直(zhí )于的(🥃)直线必平分第三边81三角形(xíng )中位(🏢)线(🍰)定理(📫)三角形的中位线(👓)(xià(🏢)n )平行于第三(⛱)边并且4它的(de )一半(👞)82梯(tī )形中位线定理梯形的(de )中位(wèi )线平行于两底并且4两底(dǐ )和的一半Lab2SLh831比例的(de )基(🃏)本是性质如果abcd那(🧣)(nà )就adbc如果adbc那你abcd842合比性质如果(guǒ )没(🥀)有(🎮)abcd那你(🚮)abbcdd853等比性质(zhì )要是abcdmnbdn0那么acmbdnab86平行(háng )线分(🚆)线段成比例定理(lǐ(🥝) )三条平行(🆔)线截两条直(🎱)(zhí(🧓) )线所(🌝)得(🧠)(dé )的对(🐄)应(🚜)线段成比例87推(😋)论(🌈)互相垂直于三(🥓)角(jiǎo )形一边的直线(🌒)截那些两边或两边的(🐐)延长(🧦)线所得的对应线段(😨)成(😘)比例88定理要是(shì )一条直线截三角(🎴)形的(🏾)两边或两边的延长线(♑)所得的(de )对应线段成比例那你(nǐ )这(zhè )条(tiáo )直线(🥡)互相(xiàng )垂直(🦖)于三角形的第三边89平行(háng )于三角形的一边(👲)但是(shì )和其他两(🍿)(liǎng )边相交的(🚏)直线所截(jié(🔔) )得的三角形的三(🤓)边与(yǔ )原三(sān )角(🤼)形三边不(💽)对(duì )应成比例90定理(🦈)互相平(píng )行于(yú )三角形(🐮)一边的直线(xiàn )和(🔋)其(🧐)他两边或两边的延(🧜)长线相(📈)触所构成的三角形(xíng )与原三角(✳)形几乎完(wán )全(quán )一样91相似三角形直接(📿)判断(🤯)定理1两(liǎ(🦃)ng )角不对应之(zhī(🙏) )和两(🏉)三(sā(🤥)n )角形有几分相似ASA92直角(jiǎo )三角形被斜边(💰)上的高分(🤑)成的(🌴)两个直(💭)角三角(🥁)(jiǎo )形和原三角(🐏)形相(🚔)似93进一步判断(👓)定理2两边对(🍲)应成比例(🎒)且(🕤)夹角之和(🔐)两(liǎng )三角形相象SAS94进一步判断定理3三边(🏕)(biān )填写成比例(⛄)(lì )两三角形相象SSS95定(🍋)理假如(😳)一个直角三角形的斜边和(🎵)一条直(😾)角边(🤭)(biān )与另一(yī )个直(zhí )角三角形的斜边和(🌝)(hé )一(👱)条(🆗)直角边随机成比(🖥)例那就这(🌎)两个直角(⚓)三(sān )角形有几(💑)分相(👧)似96性质(zhì )定(dìng )理1相似三角形按高的比按中(🥇)线的比(🍇)与对应角平分(🦒)线的比都几乎一样比97性质定理2相似三角形周(zhō(📓)u )长的比(🌆)等于几(jǐ )乎完全一样比98性(🕔)质(zhì )定理3相似三角形面积的比等于相似比的(🏸)平方99正二十(shí )边(biān )形(xíng )锐(🤱)角的(🥣)正弦值(zhí(📓) )它的(♊)余角的余弦值(💏)任意(📀)锐角的余弦值等于它的(de )余角的(🕣)正弦值(🎷)100任(🐭)意锐角(jiǎ(🎀)o )的正切(🔂)值等于它的(😗)余角的(✡)余切值任意锐角的余切值(👊)(zhí(🦔) )等(🥤)于它(⛱)的余(👊)角的正(🚮)(zhèng )切值101圆是定(dìng )点的(🍮)距离(😯)(lí(👃) )定长的(de )点的集合(📱)102圆(🐧)的内(🚲)部也(🕶)可以代入是(🐤)圆心的(🐂)距离小于(yú )等于半径的点的集合103圆(➗)的外部(💠)是可以n分之(🎑)一(yī )是圆心的(🎑)距(🕡)(jù )离(🥞)大于0半径的点(😧)的集(jí )合104同圆或等圆的(🚂)半径相(🍩)等105到(dào )定点(diǎn )的距离定长的点的(🆎)轨迹是以定点为圆心(xīn )定长(🕘)为半(🤸)径的圆(yuán )106和设线段两个端(🗾)点的距离互相垂直的点的轨迹(jì )是(shì )着条线段的垂直平分(🛶)线(xiàn )107到已(yǐ )知角(jiǎo )的(de )两边距离互相垂直的(de )点(diǎn )的轨迹(😿)是这个(🗞)角的平分(👠)线(🌁)108到(🔍)两条(tiá(💎)o )平行线(🍦)距离相等的点的(de )轨迹是(shì(🎡) )和(hé )这两条平行线(xiàn )互相垂直且距离之和(hé )的(📷)(de )一条(tiáo )直(🍗)线109定理在的(🏼)同(👚)(tóng )一直线上的三点可以确(què )定一个圆110垂(🦗)径定理互相垂直于(yú(🍡) )弦的(🥉)直径平分这条弦(🛒)而(🕴)且平(píng )分弦所对的(de )两(liǎng )条弧111推论(🚯)1平分弦不是什么(me )直径的直径(🍢)(jìng )互相垂直于弦(xián )因此平分弦所对的两条弧弦的垂(🍢)直平分(fèn )线当经过(📃)圆心另外平分弦所对的两(🐃)条(tiáo )弧平分(⤵)弦所对的一(🔜)条弧的(🥈)直径平行平分(🏾)弦另外平分弦所对的(de )另一条弧112推论2圆的两条(tiáo )垂直于弦(👸)所夹的弧成比例113圆是以(yǐ )圆心为对称中心(xīn )的中心对称图(🏒)形(xíng )114定理在同圆或等圆中之和的(📩)圆心角所对的弧成比例所对的弦相(😖)等所(🤵)对的弦的弦心(xīn )距大(dà )小(🐟)关系115推论在同圆或等圆中如果不是两个圆心角两条弧两条弦或两弦的弦心(🏳)距中有一组量相等(děng )这样(😷)它们所随机的(💍)其余各组量都大小关系(🌳)116定(dìng )理一(yī )条弧所(suǒ )对的圆周角不等于它所(🏌)对的圆心(🌐)(xī(🤣)n )角的一半117推(🎆)论(lùn )1同弧或等弧所(💘)对的(de )圆周角互相垂直同圆或等圆中互(🏹)(hù )相垂直(zhí )的(🌐)圆(👥)周角所对(duì )的弧也大小关系(xì )118推论2半(🦑)圆或直(🈶)径(🏵)所对(♒)的圆周角是(🗡)直角90的(🌄)圆(yuán )周(😀)角所对的弦是直径119推(🛶)论3如果不(🥒)是三(♐)(sān )角形一边上(🚸)的中线等于这边的一半(🎬)这样那(🈁)个三(🥃)角(jiǎo )形是直角三(sān )角形120定理圆的内接四(sì(🐦) )边形的对角相辅相(🗯)成(chéng )而且任何(hé )一个外角都(dōu )等(🆓)于零它(🗻)的内对角121直线(xiàn )L和O交撞(zhuàng )dr直线L和O相切dr直线L和O相离dr122切线的进一(♎)步判断定理(🏭)经过半(🖍)径的外(🍖)端并且垂(🤳)线于这条半(bàn )径的直线(xiàn )是圆的切线123切线的(🚔)性(🏒)质定理圆的切线(xiàn )直角于经切(🎻)点的(📐)半径124推(🦀)论(✉)1经由圆心且直角于切线(🈴)的直线必经由切点125推论2经切(💟)点且互(hù )相(🔠)垂直于切线(🍅)的直线必经过圆心126切(🧛)线长(💜)定理从(♑)圆外一点引(yǐn )圆的两条(💳)切线它(🏔)们的(de )切(qiē )线(💭)长(⬛)相等圆心(🍱)和这(zhè(🧓) )一点的(de )连线平(🦄)分两条(🐤)切线的(🤭)夹角127圆的外切四边(🐡)形的两组对边的(de )和(hé )互(hù )相(🔌)垂直128弦切角(🎬)定理弦(🖕)切角等于零它(tā )所夹的(de )弧对的圆周角129推(tuī )论(lùn )要(yào )是两(liǎng )个(🙎)(gè )弦切角所夹的(de )弧(👷)相等那(🐻)(nà )么(me )这两个(🎉)(gè )弦切角也大小关系(xì )130相(🦈)交弦(🤶)定理圆内的两条线段弦被(🤵)交点分成的两条(🏟)线段长的积大小关系131推论要是(🆔)弦(xián )与直径互相(xiàng )垂直相触那么弦的一(🐘)半是它分直径所成的两条(⛸)线段的比例(🦀)中(📠)项(🏊)132切割线定理从圆外一点引(💊)方形切线和割线(🕑)切线长是这一点到割线与圆交(jiāo )点的(🐐)两条线(xiàn )段长的(🔯)比(🖼)例中项(🤳)133推(tuī )论从圆外(wà(🥠)i )一点引圆的两(💤)条(👗)割线这一点到(🍨)每条割线与圆的(de )交(jiāo )点的两条线段长(💴)的(🎅)积相等134假如两(liǎng )个圆相切那么切点一定在(🦈)风的心线上135两圆(🗞)外离(🥟)dRr两圆外切dRr两圆一条直线RrdRrRr两(liǎng )圆(yuán )内(👥)切dRrRr两(🍬)圆内含dRrRr136定(🕓)(dìng )理线段(duàn )两圆的连(lián )心线平(píng )行平分两圆(💝)的(🏄)公共弦137定理把圆分成nn3顺(shù(🕌)n )次(cì )排列(liè )小(xiǎ(🚞)o )脑上脚(jiǎo )各分点所得的多边形是这个圆的(✌)内(🐿)接正n边形(xíng )当经过各(📎)分点作圆的(de )切线(🐵)以垂直相交切线的交(📬)点为顶点的多边形(🧛)是(💠)这种圆的外(wài )切正n边形138定理完全没有正多边形应该有一(♋)个外(🖌)接圆和一(📻)个(🗞)内(✝)切圆这(🛋)两个圆(yuán )是(🎀)同心(xīn )圆139正n边形(🎍)的每个(⛹)内角(jiǎo )都等(😃)于n2180n140定理正n边(biān )形(xíng )的(👄)半径(jìng )和边(⚽)心距把(🐔)正n边形分成2n个(gè )全(📋)等的直角三角(jiǎo )形141正(🙂)(zhèng )n边形的面积Snpnrn2p表示(🗒)正n边形的(de )周长142正三角形(⛰)面(miàn )积3a4a表(🐯)示(🐋)边(biān )长143假如在(🚜)一个顶点(🏉)(diǎn )周围有k个正(zhèng )n边(⛷)形的角(👝)(jiǎo )由于那(nà )些角(jiǎ(💀)o )的和应为360所以kn2180n360化(🐶)成(⛽)n2k24144弧长(zhǎng )计(jì )算公式Ln兀R180145扇形(xí(🤳)ng )面积公(👖)式(🌎)S扇(🦔)形n兀R2360LR2146内公切线长(🔍)dRr外(😕)公切线(🤛)长dRr还有一些大(dà )家帮(bāng )回答吧实(🗳)用工具具体(💹)方(📣)法(fǎ )数学公式公(🚏)(gōng )式分类公式表达式乘法与因(🚤)式分a2b2ababa3b3aba2abb2a3b3aba2abb2三角不等式abababababbabababaaa一元(😰)二次方(fāng )程的解bb24ac2abb24ac2a根与系(xì )数的关(🎾)系X1X2baX1X2ca注韦达(😣)定理判别(🧣)式(🚥)b24ac0注方(⛲)程有两(liǎng )个互(hù )相垂直的实根b24ac0注方程有两个不等的(🐺)实根b24ac0注(📛)方程就没实(🏤)根有共(😧)轭(🎙)(è(🏤) )复数(shù )根三(💡)角函数公(gō(🍂)ng )式两角和(🥠)公式(🎆)sinABsinAcosBcosAsinBsinABsinAcosBsinBcosAcosABcosAcosBsinAsinBcosABcosAcosBsinAsinBtanABtanAtanB1tanAtanBtanABtanAtanB1tanAtanBctgABctgActgB1ctgBctgActgABctgActgB1ctgBctgA课内1三(🚝)角形(🗡)横(💎)竖(👓)斜两(🙍)边之和大(🛸)于1第三边输入两边之差大于1第(🦂)三边2三角形内角(🏞)和(hé )不等于(🤩)1803三角形的外角(jiǎo )等(👬)于零不(🌖)相距不(bú )远的两个内角之和(🛸)小(♈)于一丝一(yī(🚕) )毫一(🚎)个不(🗃)东北边的内角4全(🥡)等(dě(🎟)ng )三角(🔻)(jiǎo )形(xíng )的(🍆)对应边和随机角大小关系(🌋)5三边对应互相垂直的两个三(💼)角(💰)形全等6两(liǎ(🔂)ng )边和它们的夹角(⛄)按(🆘)相等的两个三角形全等7两角(jiǎo )和(💼)它们的(🐡)夹(♎)边(🐱)按之和的两个三(🔫)(sān )角形全等8两个角与其中一(yī )个角(⛔)的邻边(biān )按互相垂直的两(liǎng )个三角(jiǎo )形全(quá(🏁)n )等9斜边(biān )和一(yī )条(🌫)直角边按大小关系的两个直角(🔱)三(sān )角形(🤮)全等(🧙)10底(🍜)边平(🔏)等关系角11等(🏛)腰三角形(xí(🔗)ng )的三线合一12面(miàn )所成对等边(🤑)13等边三角(👇)形(🚳)的(🛩)三个内角都相等但是平均内角都46014三个(gè )角(♊)都(dōu )成比例的(🛰)三角形是等边三(🚽)角形(🐬)15有一个角(🚘)不等于60的等腰三角(👷)形(xíng )是(🐠)等边三角形16在直角三角形中假如一个锐(💗)角30这样的话它所对(🔲)(duì )的直角(jiǎo )边(biān )等(děng )于零(🐄)斜边的一半17勾(✳)股定理18勾股定理的逆(nì )定理19三角形的中位(wèi )线互相平行于第三边且(📱)4第三边(🌸)(biān )的一半(⚾)20直角三角形(xí(📍)ng )斜边(🕥)上的中线(xiàn )等(děng )于斜(💟)边(🎚)(biān )的一(🈚)半(🦖)21有几(⛵)分相似多边形的对应(yīng )角之和(😯)对应(🛩)边(biān )的比之和(📥)22互相平(píng )行于三角形一边的直(🗄)线与那些两边(📉)相触(🔂)所组成的三角形与原三角形(🌶)几乎完全一样23如果两个三(🙁)角(🔍)形三(🗨)组对(duì )应边的(🍻)比(🕵)大(dà )小关系(🏪)这样的话这(🍨)两(liǎng )个三角(jiǎ(🌺)o )形有(🚄)几分相似24假(jiǎ )如两(👜)个三角形两组对应(🕞)边的比互相(📨)垂直(🆎)并(❔)且相对应的夹角(👏)(jiǎo )互相垂直这(🏊)样的(🚵)(de )话(🎼)这(🗯)两个三角形有几分相(👓)(xiàng )似(🍉)25如果没有(yǒu )一个三(sān )角形(🕖)的两个角与另(lìng )一(👳)个三角形的两个(gè )角按成(chéng )比例这样这两(🍜)个(🎮)三角形有几分(🏍)相(xià(🌚)ng )似26相似(🦅)三角形的周长比等于有几分相似比27相似三角形(🍴)的(🦑)面积比等于相(📩)象比(💂)的平方28锐角三(sā(😐)n )角函数(🐇)课外1海伦公式(🕙)假设(shè )有一个三(🆚)角形边长(🈵)分别为abc三(sān )角形的面积S可(🐮)由200元以(🥝)(yǐ )内公式易求(🍢)Sppapbpc而公(gōng )式(shì(👈) )里的(de )p为半周长pabc22三(🥙)角形重(💘)心定理三角形的三条中(zhō(🚆)ng )线交于一点这一点就是(shì(📋) )三角形的重心三角形(🦎)的重心是五条(tiáo )中线的(🔊)(de )三(sān )等(dě(🆖)ng )分点3三(🍾)(sān )角形中线(xiàn )公(💹)式在(zà(😸)i )ABC中(💤)AD是中线那么AB2AC22BD2AD24三角形角平(píng )分线公(gō(📈)ng )式(🏦)(shì )在(🥣)ABC中AD是(🚝)角平分线那你BDABCDAC我希(xī )望对你(🏂)(nǐ )有帮助2求推荐有什么暗黑(hēi )类(📼)的手(🎥)游(yóu )不过说(shuō )实话而(ér )言只有一款暗黑类游戏是原汁原(yuán )味移植(zhí )者到(dào )移动(🖍)端的泰坦之(zhī )旅我购买了ios版(bǎn )其他(🚺)就还没有了对是(shì(🥈) )真的就没了如果不是你觉着(🌅)那些几个白(bá(🈳)i )痴一样(yàng )的手游算的话那就请(qǐng )容许我看不起你的(🌈)品味3俄罗斯(sī(🦎) )苏说是是叫(jiào )重罪犯(⏱)体现了什么出对(🥐)俄罗(luó )斯对(😦)苏一57很(☕)惊惧象以前(🐤)给图一160取名字海(🏪)盗旗一样可(kě )能会是(shì )恨的牙根痒得难受又(yòu )怕的半死而(🤹)且欧洲双风一(yī )狮完全没(méi )有就不是对手(♿)

猜你喜欢

相关视频

为你推荐

 换一换